Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dichloro[(3,5-dimethyl-1H-pyrazol-1-yl)methane]zinc(II) and di- μ-chloro-bis\{chloro[(3,5-dimethyl-1H-pyrazol-1-yl)methane]cadmium(II)\}

Mei-Ling Cheng, Hong-Xi Li, Yong Zang and Jian-Ping Lang*

Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical Engineering, Suzhou Uinversity, Suzhou 215123, Jiangsu, People's Republic of China
Correspondence e-mail: jplang@suda.edu.cn
Received 9 January 2006
Accepted 12 January 2006
Online 31 January 2006

The Zn atom in dichloro[(3,5-dimethyl-1 H-pyrazol-1-yl)methane]zinc(II), $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right]$, (I), is tetrahedrally coordinated by two N atoms from one bis(3,5-dimethylpyrazolyl)methane ligand and two terminal Cl atoms. The molecule has no crystallographic symmetry. One H atom of the CH_{2} group of the bis(3,5-dimethylpyrazolyl)methane ligand interacts with a Cl atom of an adjacent molecule to yield intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts, thereby forming a one-dimensional zigzag chain extending along the b axis. On the other hand, in di- μ-chloro-bis\{chloro[(3,5-dimethyl$1 H$-pyrazol-1-yl)methane]cadmium(II) $\}$, $\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]$, (II), each of the two crystallographically equivalent Cd atoms is pentacoordinated by two N atoms from one bis $(3,5-$ dimethylpyrazolyl)methane ligand, and by one terminal and two bridging Cl^{-}anions. The molecule has a crystallographic centre of symmetry located at the mid-point of the $\mathrm{Cd} \cdots \mathrm{Cd}$ line. One H atom of the CH_{2} group of the bis(3,5-dimethylpyrazolyl)methane ligand interacts with a Cl atom of an adjacent molecule to produce pairwise intermolecular C $\mathrm{H} \cdots \mathrm{Cl}$ contacts, thereby affording chains of molecules running along the c axis.

Comment

It is well known that group 12 metals react with N-donor ligands to form various adducts, and these compounds exhibit diversity in their structural chemistry (Neels \& Stoeckli-Evans, 1999; Erxleben, 2001; Kaminskaia et al., 2000; Kleywegt et al., 1985; Pedrido et al., 2003; Patra \& Goldberg, 2002). Among numerous N -donor ligands, bis(pyrazol-1-yl)alkanes, serving as flexible bidentate ligands, have been reported to form stable chelates with group 12 elements (Pettinari \& Pettinari, 2005; Mann et al., 1998; Bovio et al., 1992). In the case of bis(3,5-dimethylpyrazol-1-yl)methane (dmpzm), however, the chem-
istry of its zinc and cadmium complexes is relatively unexplored. For example, several zinc complexes of dmpzm \{e.g. $\left[\mathrm{Zn} X_{2}(\mathrm{dmpzm})\right]$, where $X=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$or OAc^{-}, or $\left[\mathrm{Zn}(\text { dmpzm })_{2} X_{2}\right]$, where $X=\mathrm{ClO}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}$, or $\left.\mathrm{BF}_{4}{ }^{-}\right\}$have been prepared (Reedijk \& Verbiest, 1979; Leonesi et al., 1987), but their crystal structures have not been reported to date. To our knowledge, there is no synthetic or structural information on any cadmium complex of the dmpzm ligand. We have recently become interested in the preparation of transition metal complexes of dmpzm (Xu et al., 2005). Curious about the chemistry of zinc/cadmium complexes of dmpzm, we carried out the reaction of ZnCl_{2} or CdCl_{2} with dmpzm and the two title complexes, $\left[\mathrm{ZnCl}_{2}(\mathrm{dmpzm})\right]$, (I), and $[\mathrm{Cd}(\mu-$ $\mathrm{Cl}) \mathrm{Cl}(\mathrm{dmpzm})]_{2}$, (II), were isolated therefrom. We report here the crystal structures of complexes (I) and (II).

(I)

(II)

The asymmetric unit of (I) contains a discrete $\left[\mathrm{ZnCl}_{2}\right.$ (dmpzm)] molecule. Compound (I) may be viewed as having a 'butterfly'-shaped structure (Fig. 1), which resembles that of $\left[\mathrm{ZnBr}_{2} L\right] \quad[L \quad$ is bis(3,4,5-trimethylpyrazol-1-yl)methane; Pettinari et al., 1998]. There is no crystallographic symmetry in this molecule. Atom Zn 1 is bound to two N atoms from the dmpzm ligand and two terminal Cl atoms, forming a distorted tetrahedral geometry, with the angles around Zn 1 being in the range $89.33(5)-115.20(4)^{\circ}$. The mean $\mathrm{Zn}-\mathrm{N}$ bond distance $[2.0588(12) \AA]$ is comparable with that in $\left[\mathrm{ZnCl}_{2} L_{2}\right]$ [2.052 (4) \AA; L is 4-acetylpyridine; Steffen \& Palenik, 1977],

Figure 1
A view of the molecule of complex (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
but shorter than those in $\left[\mathrm{ZnBr}_{2} L\right][2.076$ (7) $\AA ; L$ is bis(3,4,5-trimethylpyrazol-1-yl)methane; Pettinari et al., 1998] or $\left[\mathrm{ZnCl}_{2} L\right]$ [2.132 (2) \AA; L is 2,2-bis(pyrazol-1-yl)propane; Bovio et al., 1992]. The mean $\mathrm{Zn}-\mathrm{Cl}$ bond length [2.2184 (4) \AA] is close to the values observed in $\left[\mathrm{ZnCl}_{2} L\right]$ [2.211 (3) \AA; L is 4-acetylpyridine; Steffen \& Palenik, 1977], $\left[\mathrm{ZnCl}_{2} L\right] \quad[2.219(2) \AA$; L is 2,2-bis(pyrazol-1-yl)propane; Bovio et al., 1992] and $\left[\mathrm{ZnCl}_{3} L\right][2.240$ (5) \AA; L is 8-azaadeninium; Purnell \& Hodgson, 1977]. The N1-Zn1-N4 bite angle of $89.33(5)^{\circ}$ in (I) is comparable with that observed in $\left[\mathrm{ZnCl}_{2} L\right]\left[89.47^{\circ} ; L\right.$ is 2,2-bis(pyrazol-1-yl)propane; Bovio et al., 1992].

Atom H 6 B from the CH_{2} group of each dmpzm ligand in (I) interacts with atom Cl 2 of an adjacent molecule to afford intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts (Fig. 2), thereby forming a

Figure 2
A packing diagram for (I), viewed approximately down the b axis, showing the one-dimensional zigzag chain formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Figure 3
A view of the molecule of complex (II), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $-x, 1-y,-z$.]

Figure 4
A packing diagram for (II), viewed approximately down the c axis, showing the one-dimensional chain formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.
one-dimensional zigzag chain extending along the b axis (Table 2). The $\mathrm{H} \cdots \mathrm{Cl}$ contact distance is 2.77 (2) \AA, which is comparable with those observed in $\left[\mathrm{ZnCl}_{2} L\right]\{2.74$ (2) and 2.83 (2) \AA; L is 4-methyl-2,6-bis $[(S)$-(+)-1-phenylethyliminomethyl]phenol; Prabhakar et al., 2005\}, and in trans,cis,cis$\left[\mathrm{RuCl}_{2}(\mathrm{Meim})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right][2.69$ (1) and 2.94 (1) \AA; Meim is N methylimidazole] and trans,cis,cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{Mepym})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ [2.95 (1) and 2.96 (1) \AA; Mepym is 4-methylpyrimidine; Cini et al., 2002].

The asymmetric unit of (II) contains one-half of the dimeric molecule $[\mathrm{Cd}(\mu-\mathrm{Cl}) \mathrm{Cl}(\mathrm{dmpzm})]_{2}$. As shown in Fig. 3, the structure contains a dimetallocyclic $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ core with a crystallographic centre of inversion at the mid-point of the Cd1 \cdots Cd1 1^{i} line [symmetry code: (i) $-x, 1-y,-z$]. Each Cd atom has a slightly distorted trigonal-bipyramidal geometry, coordinated by two N atoms from the dmpzm ligand, a terminal Cl atom and two bridging Cl atoms. Atoms $\mathrm{Cl}^{1}{ }^{\mathrm{i}}$ and N 4 are in axial positions, while atoms $\mathrm{Cl} 1, \mathrm{Cl} 2$ and N 1 are in equatorial positions. The $\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 4$ bond angle is 171.52 (4) ${ }^{\circ}$. The two terminal Cl atoms have trans orientations with respect to the planar $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ core. The dinuclear $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ core is asymmetric, as the $\mathrm{Cd} 1-\mathrm{Cl} 1$ and $\mathrm{Cd} 1-\mathrm{Cl}^{1}$ bond distances are 2.4649 (7) and 2.7322 (9) \AA, respectively, while the $\mathrm{Cd} 1-\mathrm{Cl} 1-\mathrm{Cd} 1^{\mathrm{i}}$ and $\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$ angles are 94.68 (2) and $85.32(2)^{\circ}$, respectively. The two asymmetric $\mathrm{Cd}-\mathrm{Cl}$ distances are common for compounds containing a $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ core, as found in $\left[\mathrm{CdCl}_{2} L\right]_{2}$ [2.487 (2) and 2.821 (2) $\AA ; L$ is 1-(5,6-dimethylbenzimidiazol-2-yl)-3-(benzimidazol-2-yl)-2thiapropane; Matthews et al., 1998] and $\left[\mathrm{CdCl}_{2} L\right]_{2}[2.537$ (1) and $2.672(1) \AA ; L$ is 3 -amino- $6,6^{\prime}$-dimethyl-2, ${ }^{\prime}$-bipyridine; Long et al., 1993]. The Cd1…Cd1 ${ }^{i}$ contact of 3.826 (2) \AA in (II) is too long to include any metal-metal interaction. Each dmpzm ligand adopts an extended and twisted exo-anti conformation and coordinates to one Cd centre in an $N, N^{\prime}-$ bidentate fashion, forming a six-membered $\mathrm{C}(\mathrm{N}-\mathrm{N})_{2} \mathrm{Cd}$ chelate ring. The average $\mathrm{Cd}-\mathrm{N}$ bond distance $[2.3467(18) \AA$ A $]$ is close to the values observed in $\left[\mathrm{CdCl}_{2} L\right]_{2}$ [2.397 (2) \AA; L is 1,4,7-triazacyclononane; Zompa et al., 1995] and $\left[\mathrm{CdCl}_{2} L\right]_{2}[2.367(3) \AA$; L is cis-3,5-diaminopiperidine; Pauly et al., 2000]. The $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 4$ bite angle of $79.00(6)^{\circ}$ is normal compared with $\left[\mathrm{CdCl}_{2} L_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}\left(80.71^{\circ} ; L\right.$ is di-2pyridylamine; Pickardt \& Staub, 1999].

Each Cl 2 atom of (II) interacts with the methylene group of the dmpzm ligand in an adjacent molecule to afford pairwise intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts (Table 4), thereby affording chains of molecules running along the c axis (Fig. 4).

Experimental

To a solution of $\mathrm{ZnCl}_{2}(0.136 \mathrm{~g}, 1 \mathrm{mmol})$ in a mixture of methanol and water ($9: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) was added a solution of dmpzm $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol (10 ml). A large amount of a white precipitate formed immediately. After stirring for 30 min , the precipitate was filtered off, washed with diethyl ether ($3 \times 5 \mathrm{ml}$) and dried in vacuo. Colourless prisms of $\left[\mathrm{ZnCl}_{2}(\mathrm{dmpzm})\right]$, (I), were obtained by recrystallization of the precipitate from a solution in dimethylformamide (yield 0.31 g , 91% based on Zn). Analysis found: C 38.72 , H 4.73, N 15.96%;
calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Zn}$: C 38.69, $\mathrm{H} 4.70, \mathrm{~N} 16.25 \%$. IR (KBr, ν, cm^{-1}): 3134 (w), 3017 (m), 2930 (w), 1558 (s), 1467 (m), 1392 (s), 1380 $(s), 1280(s), 1051(m), 1004(w), 829(m), 809(m), 677(m)$.

To a solution of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(0.228 \mathrm{~g}, 1 \mathrm{mmol})$ in a mixture of methanol and water ($9: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) was added a solution of dmpzm ($0.20 \mathrm{~g}, 1 \mathrm{mmol}$) in methanol (10 ml). The mixture was stirred at room temperature for 30 min . Slow evaporation of the solvents from the resulting solution produced colourless prisms of $\left[\mathrm{CdCl}_{2}(\mathrm{dmpzm})\right]_{2}$, (II), which were collected by filtration, washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$ and dried in air (yield $0.67 \mathrm{~g}, 87 \%$ based on Cd). Analysis found: C 34.11, H 4.21, N 13.18\%; calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{Cd}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{8}$: C 34.08, H 4.16, N 14.46%. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3124 (w), 3022 (w), 2925 (w), 1558 (s), 1464 (s), $1390(s), 1281$ (s), 1041 (m), 989 (w), 822 (m), 794 (m), 676 (m).

Compound (I)

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right]$
$M_{r}=340.55$
Monoclinic, $C 2 / c$
$a=14.9018(17) \AA$
$b=16.7328(17) \AA$
$c=12.5546(14) \AA$
$\beta=113.446(2){ }^{\circ}{ }^{\circ}$
$V=2872.0(5) \AA^{3}$
$Z=8$
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.382, T_{\text {max }}=0.456$
15701 measured reflections
3291 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.04$
3291 reflections
169 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.038 P)^{2}\right.$
$+2.2138 P$]
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.0569(12)$	$\mathrm{Zn} 1-\mathrm{Cl} 2$	$2.2164(4)$
$\mathrm{Zn} 1-\mathrm{N} 4$	$2.0616(12)$	$\mathrm{Zn} 1-\mathrm{Cl} 1$	$2.2204(5)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 4$	$89.33(5)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl} 1$	$110.08(4)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$	$114.99(4)$	$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{Cl} 1$	$111.12(4)$
$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{Cl} 2$	$115.20(4)$	$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1$	$113.738(17)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.99	2.77	$3.6875(15)$	154
Symmetry code: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.				

Compound (II)

Crystal data

$\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=775.16$
Triclinic, $P \overline{1}$
$a=7.7033$ (17) \AA
$b=9.232(2) \AA$
$c=11.513$ (2) \AA
$\alpha=112.752(19)^{\circ}$
$\beta=102.34$ (2) ${ }^{\circ}$
$\gamma=97.28$ (3) ${ }^{\circ}$
$V=717.4(3) \AA^{3}$
$Z=1$
Data collection
Rigaku Mercury diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.417, T_{\text {max }}=0.684$
7007 measured reflections
2597 independent reflections
Refinement
Refinement on F^{2}

$$
D_{x}=1.794 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3251 reflections
$\theta=3.3-25.3^{\circ}$
$\mu=1.88 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colourless
$0.54 \times 0.21 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& 2487 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.016 \\
& \theta_{\max }=25.4^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-11 \rightarrow 11 \\
& l=-13 \rightarrow 13 \\
& \\
& \\
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0223 P)^{2}\right. \\
\quad+0.328 P]
\end{array}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.10$
2597 reflections
168 parameters
H -atom parameters constrained

3119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-19 \rightarrow 19$
$k=-21 \rightarrow 21$
$l=-13 \rightarrow 16$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0038 (2)

Table 3

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for (II).

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.2847(19)$	$\mathrm{Cd} 1-\mathrm{Cl} 1$	$2.4649(7)$
$\mathrm{Cd} 1-\mathrm{N} 4$	$2.4088(18)$	$\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.7322(9)$
$\mathrm{Cd} 1-\mathrm{Cl} 2$	$2.4616(9)$	$\mathrm{Cl} 1-\mathrm{Cd} 1^{\mathrm{i}}$	$2.7322(9)$
			$92.87(5)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 4$	$116.72(5)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$\mathrm{N} 4-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 2$	$89.61(5)$	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$171.52(4)$
$\mathrm{N} 4-\mathrm{Cd} 1-\mathrm{Cl} 2$	$114.00(5)$	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$81.95(3)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	$100.11(4)$	$\mathrm{Cd} 1-\mathrm{Cl} 1-\mathrm{Cd} 1^{\mathrm{i}}$	$94.62(2)$
$\mathrm{N} 4-\mathrm{Cd} 1-\mathrm{Cl} 1$	$129.28(3)$		
$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$			

Symmetry code: (i) $-x,-y+1,-z$.

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.99	2.77	$3.666(2)$	151

Symmetry code: (ii) $-x,-y+1,-z+1$.

All H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ for methyl groups, $0.99 \AA$ for methylene groups or $0.95 \AA$ for ring CH groups, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups.

For both compounds, data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271036 and 20525101), the Natural Science Foundation of Jiangsu Province (grant No. BK2004205) and the Key Laboratory of Organic Synthesis of Jiangsu Province (grant No. JSK001).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1428). Services for accessing these data are described at the back of the journal.

References

Bovio, B., Cingolani, A. \& Bonati, F. Z. (1992). Z. Anorg. Allg. Chem. 610, 151-156.
Cini, R., Bellucci, C., Tamasi, G., Corsini, M., Fontani, M. \& Zanello, P. (2002). Inorg. Chim. Acta, 339, 89-103.
Erxleben, A. (2001). Inorg. Chem. 40, 412-414.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kaminskaia, N. V., Spingler, B. \& Lippard, S. J. (2000). J. Am. Chem. Soc. 122, 6411-6422.
Kleywegt, G. J., Wiesmeijer, W. G. R., Van Driel, G. J., Driessen, W. L., Reedijk, J. \& Noordik, J. H. (1985). J. Chem. Soc. Dalton Trans. pp. 21772184.

Leonesi, D., Cingolani, A., Gioia Lobbia, G., Lorenzotti, A. \& Bonati, F. (1987). Gazz. Chim. Ital. 117, 491-494.

Long, G. V., Boyd, S. E., Harding, M. M., Buys, I. E. \& Hambley, T. W. (1993). J. Chem. Soc. Dalton Trans. pp. 3175-3180.

Mann, K. L. V., Jeffery, J. C., McCleverty, J. A., Thornton, P. \& Ward, M. D. (1998). J. Chem. Soc. Dalton Trans. pp. 89-98.

Matthews, C. J., Clegg, W., Heath, S. L., Nartin, N. C., Hill, M. N. S. \& Lockhart, J. C. (1998). Inorg. Chem. 37, 199-207.

Neels, A. \& Stoeckli-Evans, H. (1999). Inorg. Chem. 38, 6164-6170.
Patra, G. K. \& Goldberg, I. (2002). J. Chem. Soc. Dalton Trans. pp. 1051-1057.
Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zurcher, F., Hoffmann, R., Fassler, T. F. \& Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830-2846.
Pedrido, R., Bermejo, M. R., Garcia-Deibe, A. M., Gonzalez-Noya, A. M., Maneiro, M. \& Vazquez, M. (2003). Eur. J. Inorg. Chem. pp. 3193-3200.
Pettinari, C., Marchetti, F., Cingolani, A., Leonesi, D., Cdapietro, M. \& Margadonna, S. (1998). Polyhedron, 17, 4145-4154.
Pettinari, C. \& Pettinari, R. (2005). Coord. Chem. Rev. 249, 663-691.
Pickardt, J. \& Staub, B. (1999). Z. Naturforsch. Teil B, 54, 329-336.
Prabhakar, M., Zacharias, P. S. \& Das, S. K. (2005). Inorg. Chem. 44, 25852587.

Purnell, L. G. \& Hodgson, D. J. (1977). J. Am. Chem. Soc. 99, 3651-3657.
Reedijk, J. \& Verbiest, J. (1979). Transition Met. Chem. 3, 239-243.
Rigaku (2001). CrystalClear (Version 1.3). Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steffen, W. L. \& Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.
Xu, Y., Li, H.-X., Zhang, W.-H., Zhang, Y. \& Lang, J.-P. (2005). Acta Cryst. C61, m4-m6.
Zompa, L. J., Diaz, H. \& Margulis, T. N. (1995). Inorg. Chim. Acta, 232, 131137.

